基于强化语义流场和多级特征融合的道路场景分割方法

root 提交于 周一, 01/10/2022 - 19:32
自动驾驶是目前计算机视觉任务中难度较大的一类任务,而道路场景下的语义分割是自动驾驶的核心技术之一。本文针对经典分割网络中分辨率恢复方式简单,导致细节信息不完整、目标边缘模糊的问题,提出一种基于强化语义流场的上采样方法。该方法通过学习相邻特征图之间的语义流场,使生成图语义信息更细致,边界处更清晰。同时针对道路场景中目标尺度变化处理困难、小目标难以识别的问题,提出一种新的多级特征融合方法,充分融合深层语义信息与浅层细节信息,以适应不同尺度的目标。本文采用CamVid为数据集进行实验,并进行数据增强。实验表明本文提出的两种方法均显著提升了准确度,整体网络与PSPNet、Deeplabv3+等多种模型相比,准确率更高,分割效果更接近真实值。

相关内容

发布日期 06/17/2022 - 10:21
发布日期 01/01/1970 - 08:00
发布日期 01/21/2024 - 12:12
发布日期 06/17/2022 - 10:21
发布日期 09/10/2023 - 22:37
发布日期 08/04/2020 - 19:02
发布日期 08/04/2020 - 01:35
发布日期 08/04/2020 - 01:35
发布日期 01/10/2022 - 19:32