- 3 次围观
自动驾驶是目前计算机视觉任务中难度较大的一类任务,而道路场景下的语义分割是自动驾驶的核心技术之一。本文针对经典分割网络中分辨率恢复方式简单,导致细节信息不完整、目标边缘模糊的问题,提出一种基于强化语义流场的上采样方法。该方法通过学习相邻特征图之间的语义流场,使生成图语义信息更细致,边界处更清晰。同时针对道路场景中目标尺度变化处理困难、小目标难以识别的问题,提出一种新的多级特征融合方法,充分融合深层语义信息与浅层细节信息,以适应不同尺度的目标。本文采用CamVid为数据集进行实验,并进行数据增强。实验表明本文提出的两种方法均显著提升了准确度,整体网络与PSPNet、Deeplabv3+等多种模型相比,准确率更高,分割效果更接近真实值。
来源出处
基于强化语义流场和多级特征融合的道路场景分割方法
http://sjcj.nuaa.edu.cn/ch/reader/view_abstract.aspx?file_no=202202015&flag=1
相关内容
发布日期
12/12/2023 - 01:18
发布日期
01/21/2024 - 12:12
发布日期
06/17/2022 - 10:21
发布日期
06/17/2022 - 10:21
发布日期
01/10/2022 - 19:31
发布日期
01/22/2024 - 01:44
发布日期
06/17/2022 - 10:21
发布日期
08/23/2024 - 19:21
发布日期
06/17/2022 - 10:21
发布日期
08/18/2024 - 19:19
发布日期
08/04/2020 - 01:35
发布日期
06/17/2022 - 10:21
发布日期
08/04/2020 - 01:35
发布日期
06/17/2022 - 10:21
发布日期
09/10/2023 - 22:37
发布日期
10/31/2021 - 01:12
发布日期
10/31/2021 - 01:48
发布日期
06/17/2022 - 10:21
发布日期
10/12/2023 - 23:10
发布日期
08/04/2020 - 01:35