基于粒计算的多源信息融合方法综述

root 提交于 周五, 06/17/2022 - 10:21
多源数据是一种综合多个信息源或数据集的复杂数据类型,其主要特点是不同的信息源隐含不同的知识结构,且从不同的角度刻画和描述了样本以及样本之间的关系。如何协同地融合与集成多源数据,并从不同视角快速地为用户挖掘出整体决策知识,成为数据科学领域亟待破解的科学问题。经典粗糙集理论、多粒度方法、证据理论和信息熵是常见的、有效的多源信息融合方法,已取得较为丰硕的成果。本文基于粒计算的角度对多源信息融合工作进行综述研究,介绍了每种信息融合方法的基本概念以及主要研究思路,并提出了多源信息融合领域中存在的若干问题,为该领域的后续研究提供理论参考。

相关内容

发布日期 01/10/2022 - 19:31
发布日期 08/23/2024 - 19:21
发布日期 06/17/2022 - 10:21
发布日期 06/17/2022 - 10:21
发布日期 08/04/2020 - 01:35
发布日期 06/17/2022 - 10:21
发布日期 10/12/2023 - 23:10