基于随机游走的风险致病基因预测研究进展

root 提交于 周日, 10/31/2021 - 01:12
风险致病基因预测有助于揭示癌症等复杂疾病发生、发展机理,提高现有复杂疾病检测、预防及治疗水平,为药物设计提供靶标. 全基因组关联分析(GWAS)和连锁分析等传统方法通常会产生数百种候选致病基因,采用生物实验方法进一步验证这些候选致病基因往往成本高、费时费力,而通过计算方法预测风险致病基因,并对其进行排序,可有效减少候选致病基因数量,帮助生物学家优化实验验证方案. 鉴于目前随机游走算法在风险致病基因预测方面的卓越表现,本文从单元分子网络、多重分子网络和异构分子网络出发,对基于随机游走预测风险致病基因研究进展进行较全面的综述分析,讨论其所存在的计算问题,展望未来可能的研究方向.