J Biomed Mater Res A. 2026 Jan;114(1):e70028. doi: 10.1002/jbma.70028.
ABSTRACT
Traditional 2D cell cultures and animal models have served as the foundations of biomedical research. These have significant limitations in modeling human physiology and predicting outcomes of therapy. Recent developments in 3D organoids and organ-on-chip technologies have shifted the field by enabling human relevant dynamic and scalable platforms for disease modeling and drug discovery and toxicity evaluation. Organoids derived from either stem cells or patient samples accurately recreate complex cellular structure and function found in human organs. The combination of organoids with organ-on-chip systems, or micro-engineered devices that closely simulate the interactions between distinct organ types including tissue to tissue as well as fluids and mechanical forces, allows researchers to continually monitor and manipulate the immediate environment of cells. The focus of this study will be on the underlying technologies for the manufacture and use of these systems as well as the main applications of these systems. Future research will include the development of multi-organ chips, artificial intelligence (AI), and biosensors. This study also illustrates how organoids and organ-on-chip technologies will enable the modeling and mimicking of common neurological, liver, gut, heart, cancer, and infectious diseases, as well as their application for high-throughput drug screening and nanotoxicology applications which could potentially help to lessen our reliance on animals for preclinical drug testing. The combined use of CRISPR gene editing, multi-omics profiling, and machine-learning technology is accelerating the transition to personalized medicine. In spite of issues surrounding the standards associated with the use of organoid and organ-on-chip technology, ethical issues, and the magnitude of scalability, there continues to be ongoing technical advances and government support for this quickly developing technology. Organoids and organ-on-chip technologies represent a fundamental shift in the practice of biomedical research and may allow us to more closely and accurately simulate authentic human physiology while providing more efficient and safer platform for drug discovery to be conducted.
PMID:41481795 | DOI:10.1002/jbma.70028