Biomimetics (Basel). 2025 Sep 16;10(9):624. doi: 10.3390/biomimetics10090624.
ABSTRACT
Organoids, self-organizing, three-dimensional (3D) multicellular structures derived from tissues or stem cells, offer physiologically relevant models for studying human development and disease. Compared to conventional two-dimensional (2D) cell cultures and animal models, organoids more accurately recapitulate the architecture and function of human organs. Among the critical microenvironmental cues influencing organoid behavior, hypoxia and multilineage communication are particularly important for guiding cell fate, tissue organization, and pathological modeling. Hypoxia, primarily regulated by hypoxia-inducible factors (HIFs), modulates cellular proliferation, differentiation, metabolism, and gene expression, making it a key component in disease modeling. Similarly, multilineage communication, facilitated by intercellular interactions and extracellular matrix (ECM) remodeling, enhances organoid complexity and immunological relevance. This review explores the dynamic interplay between hypoxia and multilineage signaling in 3D organoid-based disease models, emphasizing recent advances in engineering hypoxic niches and co-culture systems to improve preclinical research fidelity. We also discuss their translational implications for drug screening, regenerative medicine, and precision therapies, while highlighting current challenges and future opportunities. By integrating biophysical, biochemical, and computational approaches, next-generation organoid models may be further optimized for translational research and therapeutic innovation.
PMID:41002858 | PMC:PMC12467935 | DOI:10.3390/biomimetics10090624