Biomater Adv. 2025 Sep 29;179:214528. doi: 10.1016/j.bioadv.2025.214528. Online ahead of print.
ABSTRACT
Breast cancer is a malignant tumour with high heterogeneity. Traditional research models rely mainly on 2D cell culture and patient-derived tumour xenografts (PDXs). However, these models have limited use in clinical trials because of their shortcomings in mimicking the tumour microenvironment and preserving the genetic background. In recent years, organoids, emerging models capable of self-organizing to form 3D structures in vitro, have become key tools for overcoming the traditional dilemma and are promising alternatives for breast cancer research. This review integrates cutting-edge technologies such as organ-on-a-chip and CRISPR/Cas9 gene editing to summarize the multidimensional generation strategy of breast cancer organoids and discusses the clinical value of translation from diagnosis to therapy. Compared with existing studies, this review provides a systematic solution from "model generation" to "precision medicine" for breast cancer research, and the hope is that this review will pave the way for the further development of organoids.
PMID:41043311 | DOI:10.1016/j.bioadv.2025.214528