Nanomaterials (Basel). 2025 Sep 13;15(18):1412. doi: 10.3390/nano15181412.
ABSTRACT
With the spread of nanotechnology use in industry, exposure to nanomaterials is currently exponentially increasing. With reports indicating nanoparticles' ability to pass through key biological barriers-gastrointestinal, lung, skin, blood-brain and the placenta barriers-the question of their safety, particularly the risks associated with embryonic development, arises. The aim of this article is to verify the impact of ZnO nanoparticles, which are commonly used and considered to be safe for adult organisms on the developing embryo. In the current study, the influence of the dose and shape of ZnO nanoparticles (oval vs. long) was evaluated in the chicken embryo model. The oxidative stress (superoxide dismutase (SOD)) activity, malondialdehyde (MDA) and carbonylated protein ((CP) levels), and gene expression changes (full genomic microarray study) were tested. We found that at both doses (10 µg/mL and 100 µg/mL, 100 µL into the air chamber) neither elongated nor oval ZnO nanoparticles changed in ovo mortality. Long ZnO nanoparticles had a lesser and more delayed impact on evaluated parameters, regardless of their higher in vitro toxicity. However, both nanoparticle forms induced changes in the oxidoreductive potential and affected expression of a significant number (1487 for oval and 548 for long ZnO nanoparticles) of identified genes during early embryo development.
PMID:41003048 | PMC:PMC12472910 | DOI:10.3390/nano15181412