- 1次围观
Glia. 2025 Jul 30. doi: 10.1002/glia.70049. Online ahead of print.
ABSTRACT
Glial fibrillary acidic protein (GFAP) is a type-3 intermediate filament protein mainly expressed in astrocytes in the central nervous system. Mutations in GFAP cause Alexander disease (AxD), a rare and fatal neurological disorder. How exactly mutant GFAP eventually leads to white and gray matter deterioration in AxD remains unknown. GFAP is known to be expressed also in neural precursor cells in the developing brain. Here, we used AxD patient-derived induced pluripotent stem cells (iPSCs) to explore the impact of mutant GFAP during neurodifferentiation. Our results show that GFAP is already expressed in iPSCs. Moreover, we have found that mutations in GFAP can severely affect neural organoid development through altering lineage commitment in embryoid bodies. Together, these results support the notion that GFAP plays a role as an early modulator of neurodevelopment.
PMID:40735838 | DOI:10.1002/glia.70049