Molecular markers of stress in the sea urchin embryo test: Analysing the effect of climate change and pollutant mixtures on Paracentrotus lividus larvae

root 提交于 周四, 01/01/1970 - 08:00

Comp Biochem Physiol C Toxicol Pharmacol. 2025 Aug 6;298:110320. doi: 10.1016/j.cbpc.2025.110320. Online ahead of print.

ABSTRACT

Climate change and pollution represent critical stressors for marine ecosystems, particularly for calcifying organisms such as the sea urchin Paracentrotus lividus. This study examines the combined effects of ocean acidification (OA), ocean warming (OW), and microplastics (MP) loaded with chlorpyrifos (CPF), a broad-spectrum organophosphate insecticide, on sea urchin larvae, evaluating growth and molecular endpoints. Experimental treatments simulated future ocean conditions predicted for 2100, exposing larvae to varying temperature and pH levels, alongside CPF-contaminated MP. RNA sequencing (RNA-seq) was utilized to assess gene expression changes, revealing significant transcriptional shifts in metabolic, cellular, and developmental pathways. Morphological responses showed reduced larval growth, exacerbated under OA and OW conditions. Molecular analyses identified key upregulated pathways associated with stress response, including nitrogen metabolism and extracellular matrix remodelling, while downregulated genes involved DNA stability, cell cycle regulation, and enzymatic activities. These findings suggest a dual compensatory and deleterious response to combined stressors. Notably, temperature acted as a modulator of stressor effects, amplifying oxidative stress and metabolic costs at higher temperatures. Potential biomarkers, such as genes involved in actin regulation and embryonic development, were identified, offering possible tools for early detection of environmental stress. This study highlights the compounded impacts of anthropogenic and climate-induced stressors on marine invertebrates, emphasizing the need for integrative molecular approaches in ecotoxicology. Our findings contribute to the understanding of organismal adaptation and vulnerability in the face of global climate change and pollution, informing conservation strategies for marine ecosystems.

PMID:40780634 | DOI:10.1016/j.cbpc.2025.110320