在钢铁行业中,碳化物是钢材中一种非常重要的组成成分,其在钢材中的分布对于评估钢材的质量具有很高的参考价值。然而,目前棒材碳化物的检测手段主要为人工检测,成本高昂且缺乏稳定性。引入人工智能领域的深度学习技术,收集并标注了3 192张高质量钢铁棒材带状碳化物图像与11个完整样品数据,创建了工业场景下的棒材带状碳化物目标检测数据集(Banded carbide dataset on object detection for steel bar, BCDOD)。使用深度学习领域中常见的目标检测方法对数据集进行了实验分析,针对应用场景与数据的特点,引入旋转数据增强、Focal Loss函数与负样本微调对级联R-CNN模型进行改进,提升了模型的性能,平均精度达到96%。同时,在完整样品数据取得了100%的识别准确率,取得了较为理想的效果,弥补了人工智能技术在碳化物金相检测领域的空缺。
来源出处
基于改进级联R-CNN的钢材带状碳化物检测与分级
http://sjcj.nuaa.edu.cn/sjcjycl/article/abstract/202405014
相关内容
发布日期
03/22/2024 - 09:16
发布日期
01/10/2022 - 19:32
发布日期
06/17/2022 - 10:21
发布日期
08/14/2023 - 22:13
发布日期
01/10/2022 - 19:31
发布日期
08/04/2020 - 01:35
发布日期
10/23/2023 - 23:25
发布日期
10/31/2021 - 01:47
发布日期
01/10/2022 - 19:31
发布日期
10/31/2021 - 01:47
发布日期
10/31/2021 - 01:48
发布日期
01/10/2022 - 19:31
发布日期
10/31/2021 - 01:47
发布日期
10/31/2021 - 01:22
发布日期
10/31/2021 - 01:12
发布日期
06/17/2022 - 10:21
发布日期
06/17/2022 - 10:21
发布日期
12/09/2023 - 01:01
发布日期
08/04/2020 - 01:35
发布日期
07/31/2024 - 18:08