- 3 次围观
随着深度学习的不断发展,说话人确认(Speaker verification)技术已经取得了长足的进步。该技术相较于其他生物特征识别技术,具有可远程操作、成本低和易于人机交互等优势,在公安刑侦、金融服务等领域展现出广泛的应用前景。本文系统综述了基于深度学习的说话人确认技术的发展脉络。首先,介绍了基于深度学习的说话人特征表示模型在模型输入与结构、池化层、有监督损失函数和自监督学习与预训练模型4个方面的发展历程和研究现状;其次,探讨了说话人确认技术在实际应用中面临的跨域不匹配问题,如噪声干扰、信道不匹配和远场语音等,并概述了相应的领域自适应和领域泛化方法;最后,指出了进一步的研究方向。
来源出处
基于深度学习的说话人确认方法研究现状及展望
http://sjcj.nuaa.edu.cn/sjcjycl/article/abstract/202405003
相关内容
发布日期
01/22/2024 - 00:46
发布日期
11/17/2024 - 19:48
发布日期
08/04/2020 - 01:35
发布日期
09/02/2024 - 19:26
发布日期
08/04/2020 - 01:35
发布日期
11/13/2024 - 19:47
发布日期
06/17/2022 - 10:21
发布日期
10/31/2021 - 01:47
发布日期
01/10/2022 - 19:31
发布日期
10/13/2024 - 19:35
发布日期
05/06/2024 - 09:39
发布日期
08/04/2020 - 01:35
发布日期
10/09/2024 - 19:31
发布日期
11/22/2023 - 00:25
发布日期
06/23/2024 - 17:52
发布日期
07/27/2023 - 21:49
发布日期
10/31/2021 - 01:48
发布日期
02/17/2024 - 13:54
发布日期
10/31/2021 - 01:12
发布日期
06/17/2022 - 10:21