在人类活动识别的应用环境中,从原始传感器数据中提取更加有效的特征仍具有挑战性。针对该问题,利用离散小波变换(Discrete wavelet transform, DWT)和变分模式分解(Variational mode decomposition,VMD)的混合信号分解技术提取原始信号中的显著特征向量。在UCI-HAR数据集与SCUT-NAA数据集上,利用多种机器学习分类算法,例如K近邻、随机森林、LightGBM和XGBoost,对DWT-VMD混合信号分解算法的有效性进行了实验。实验结果表明,与未使用混合信号分解技术相比,使用该技术后识别准确率均有所提高,其中UCI-HAR数据集分类准确率达到98.91%,与未加入分解算法相比提高了1.79%;SCUT-NAA数据集分类准确率达到95.52%,提高了3.2%。在人体活动识别中,利用DWT-VMD混合信号分解技术,能够提取原始信号中更有效的特征,提高识别准确率,具有一定的实用性。
来源出处
基于DWT-VMD混合信号分解技术的人体活动识别
http://sjcj.nuaa.edu.cn/sjcjycl/article/abstract/202403020
相关内容
发布日期
08/04/2020 - 01:35
发布日期
06/17/2022 - 10:21
发布日期
06/22/2024 - 17:53
发布日期
01/10/2022 - 19:32
发布日期
09/21/2023 - 22:52
发布日期
02/10/2022 - 15:24
发布日期
01/10/2022 - 19:31
发布日期
08/04/2020 - 01:35
发布日期
10/23/2024 - 19:39
发布日期
09/02/2024 - 19:26
发布日期
08/04/2020 - 01:35
发布日期
08/04/2020 - 01:35
发布日期
06/07/2024 - 17:46
发布日期
08/20/2024 - 19:21
发布日期
10/31/2021 - 01:12
发布日期
04/18/2024 - 09:29
发布日期
08/04/2020 - 01:35
发布日期
09/18/2024 - 19:30
发布日期
09/02/2024 - 19:26
发布日期
07/02/2023 - 18:27