基于DWT-VMD混合信号分解技术的人体活动识别

root 提交于 周五, 06/14/2024 - 17:47
在人类活动识别的应用环境中,从原始传感器数据中提取更加有效的特征仍具有挑战性。针对该问题,利用离散小波变换(Discrete wavelet transform, DWT)和变分模式分解(Variational mode decomposition,VMD)的混合信号分解技术提取原始信号中的显著特征向量。在UCI-HAR数据集与SCUT-NAA数据集上,利用多种机器学习分类算法,例如K近邻、随机森林、LightGBM和XGBoost,对DWT-VMD混合信号分解算法的有效性进行了实验。实验结果表明,与未使用混合信号分解技术相比,使用该技术后识别准确率均有所提高,其中UCI-HAR数据集分类准确率达到98.91%,与未加入分解算法相比提高了1.79%;SCUT-NAA数据集分类准确率达到95.52%,提高了3.2%。在人体活动识别中,利用DWT-VMD混合信号分解技术,能够提取原始信号中更有效的特征,提高识别准确率,具有一定的实用性。

相关内容

发布日期 10/31/2021 - 01:12
发布日期 08/04/2020 - 01:35
发布日期 01/10/2022 - 19:31
发布日期 12/21/2023 - 11:39
发布日期 10/09/2024 - 19:31
发布日期 08/04/2020 - 01:35
发布日期 01/11/2025 - 20:33