- 2 次围观
随着对高维多目标优化问题的深入研究,带有不规则Pareto前沿的高维多目标优化问题因其复杂的Pareto前沿分布,给现有方法的求解带来了挑战。针对上述问题,提出一种基于增强生长型神经气的高维多目标进化算法,该算法综合生长型神经气网络的学习特性与二元质量指标的优化特性来增强种群在不规则Pareto前沿的收敛压力。首先,设计了一种增强的生长型神经气网络,该网络利用Pareto最优前沿的拓扑信息指导种群向Pareto最优前沿方向收敛。然后,提出了一种联合度量指标以配合Pareto支配信息来综合评价个体的收敛性。最后,提出一种基于自适应参考点的环境选择增强种群在高维目标空间的多样性。为验证所提算法的性能,在DTLZ和WFG基准问题集中的44个不规则高维多目标优化问题与5种先进的高维多目标进化算法进行对比实验。实验结果表明,所提出的基于增强生长型神经气的高维多目标进化算法的整体性能优于对比算法。
来源出处
基于增强生长型神经气的高维多目标进化算法
http://sjcj.nuaa.edu.cn/sjcjycl/article/abstract/202403011
相关内容
发布日期
12/12/2023 - 01:18
发布日期
01/21/2024 - 12:12
发布日期
06/17/2022 - 10:21
发布日期
06/17/2022 - 10:21
发布日期
01/10/2022 - 19:31
发布日期
01/22/2024 - 01:44
发布日期
06/17/2022 - 10:21
发布日期
08/23/2024 - 19:21
发布日期
06/17/2022 - 10:21
发布日期
08/18/2024 - 19:19
发布日期
08/04/2020 - 01:35
发布日期
06/17/2022 - 10:21
发布日期
08/04/2020 - 01:35
发布日期
06/17/2022 - 10:21
发布日期
09/10/2023 - 22:37
发布日期
10/31/2021 - 01:12
发布日期
10/31/2021 - 01:48
发布日期
06/17/2022 - 10:21
发布日期
10/12/2023 - 23:10
发布日期
08/04/2020 - 01:35