基于多重注意力和schatten<i>-p</i>范数的息肉分割网络

root 提交于 周一, 02/26/2024 - 16:14
自动准确的息肉定位分割方法可以在结直肠癌病变早期及时地发现息肉,大大降低癌变几率。编解码结构作为近年来息肉分割中最主流的网络结构,已经得到了很大的改进,如提高模型捕获全局上下文特征和局部特征的能力,使用深层特征对浅层解码做指导。但是息肉形状和大小不一,在编码时,由于卷积特性容易过于陷入局部信息挖掘,而失去远程信息依赖关系;还有一些息肉图像存在对比度低、空间复杂的特性,导致息肉与背景两者极易混淆。本文提出了基于多重注意力和schatten-p 范数的息肉分割网络。其中,轴向多重注意力模块利用轴向注意力补充图像中的远程上下文关系,同时补充对边缘、背景信息的关注以实现特征互补,在注意全局特征的同时加强对局部细节特征的捕捉;利用矩阵奇异值和矩阵隐含信息的关联性,引入schatten-p 范数作约束,从矩阵角度分析数据,辅助模型辨别前景和背景。通过设置大量实验,证明了本文提出方法的有效性,并且MASNet在Kvasir-SEG数据集上对比不同的方法,取得了较好的分割结果。

相关内容

发布日期 08/04/2020 - 01:35
发布日期 06/17/2022 - 10:21
发布日期 06/22/2024 - 17:53
发布日期 02/10/2022 - 15:24
发布日期 08/04/2020 - 01:35
发布日期 10/23/2024 - 19:39
发布日期 08/04/2020 - 01:35
发布日期 04/18/2024 - 09:29
发布日期 09/18/2024 - 19:30