基于NaN-Bicluster SMOTE的非均衡信贷数据分类研究及应用

root 提交于 周三, 12/13/2023 - 01:17
为了有效评估非均衡信贷数据中的借款人信用风险,基于合成少数过采样技术(Synthetic minority oversampling technique,SMOTE)、自然近邻(Natural neighbor,NaN)和双聚类(Bicluster)构建了NaN-Bicluster SMOTE方法以改进SMOTE。首先使用无参数的自然近邻设定采样样本选取的逻辑规则,规避了r近邻划分样本时产生的不稳定性;其次基于自然近邻稳定结构规定安全范围设定的逻辑规则,避免合成样本成为噪声样本;然后使用双聚类挖掘局部规则,以合成样本继承局部规则的方式改进SMOTE合成公式;最后,在Prosper小额贷款平台的非均衡信贷数据集上将NaN-Bicluster SMOTE与若干采样方法和机器学习模型进行对比分析,并进一步使用统计检验方法验证其性能的优越性。

相关内容

发布日期 01/21/2024 - 12:12
发布日期 05/12/2024 - 09:43
发布日期 02/24/2024 - 15:39
发布日期 07/04/2024 - 17:54
发布日期 08/04/2020 - 01:35
发布日期 10/31/2021 - 01:12
发布日期 06/17/2022 - 10:21
发布日期 06/11/2024 - 17:46