基于标准化流的CS-Flow方法在缺陷检测领域取得了不错的效果,但其重复堆叠单一耦合块的方式增大了网络的复杂度。为此,本文提出了由特征平行流(Feature advection flow, FA flow)与特征混合流(Feature blending flow, FB flow)两种耦合块堆叠构成的网络ValidFlow,其中FA flow内部的子网络去掉了上下采样的捷径分支,并引入深度可分离卷积;FB flow内部的子网络在3个尺度上进行跨尺度融合。这样的设置使得ValidFlow在参数量减少的同时保证了信息的充分混合。在MVTec AD、MTD和DAGM数据集上与已有方法的对比结果显示,在MVTec AD数据集上,ValidFlow在15个类别中的平均AUROC为99.2%,在4个类别上的AUROC均为100%;在MTD数据集上获得了99.6%的AUROC;相比于CS-Flow,ValidFlow的参数量减少了207.61M,推理速度FPS提升了22;在DAGM数据集上,10个类别的平均AUROC为99.0%,性能上非常接近有监督的方法。
来源出处
ValidFlow:基于标准化流的无监督图像缺陷检测
http://sjcj.nuaa.edu.cn/sjcjycl/article/abstract/202306018
相关内容
发布日期
08/04/2020 - 01:35
发布日期
06/17/2022 - 10:21
发布日期
06/22/2024 - 17:53
发布日期
01/10/2022 - 19:32
发布日期
09/21/2023 - 22:52
发布日期
02/10/2022 - 15:24
发布日期
01/10/2022 - 19:31
发布日期
08/04/2020 - 01:35
发布日期
10/23/2024 - 19:39
发布日期
09/02/2024 - 19:26
发布日期
08/04/2020 - 01:35
发布日期
08/04/2020 - 01:35
发布日期
06/07/2024 - 17:46
发布日期
08/20/2024 - 19:21
发布日期
10/31/2021 - 01:12
发布日期
04/18/2024 - 09:29
发布日期
08/04/2020 - 01:35
发布日期
09/18/2024 - 19:30
发布日期
09/02/2024 - 19:26
发布日期
07/02/2023 - 18:27