SiamBM:实现更佳匹配的Siamese目标跟踪网络

root 提交于 周二, 10/17/2023 - 23:16
基于孪生网络的目标跟踪算法通常采用简单的互相关匹配方式,然而这种简单的匹配方式会引入大量无关信息,弱化目标区域的响应。基于无锚框的孪生跟踪网络虽然避免了锚框参数的调整,但由于失去了先验性信息,并不能很好地适应目标物的尺度变化。因此,针对上述所存在的问题,本文提出了一种基于孪生网络的目标跟踪匹配增强算法SiamBM。通过将目标的边界框坐标信息进行编码,为跟踪模型提供有效的指导信息;采用深度可分离互相关级联像素匹配互相关的方式,进一步提高跟踪模型的判别能力;采用多尺度互相关的方式,增强跟踪模型的尺度适应能力。在OTB100数据集上,SiamBM的成功率和精确率分别达到了0.684和0.906,相比基准模型分别提高了5.2%和4.2%。实验结果表明,与目前主流的跟踪器相比,SiamBM取得了相当有竞争力的结果,在各项数据集指标上取得了优越的性能。

相关内容

发布日期 01/10/2022 - 19:31
发布日期 08/23/2024 - 19:21
发布日期 06/17/2022 - 10:21
发布日期 06/17/2022 - 10:21
发布日期 08/04/2020 - 01:35
发布日期 06/17/2022 - 10:21
发布日期 10/12/2023 - 23:10