- 2 次围观
现有的非负矩阵分解方法往往聚焦于数据全局结构信息的学习,在很多情况下忽略了对数据局部信息的学习,而局部学习的方法也通常局限于流行学习,存在一些缺陷。为解决这一问题,提出了一种基于数据局部相似性学习的鲁棒非负矩阵分解算法(Robust nonnegative matrix factorization with local similarity learning, RLS-NMF)。采用一种新的数据局部相似性学习方法,它与流形方法存在显著区别,能够同时学习数据的全局结构信息,从而能挖掘数据类内相似和类间相离的性质。同时,考虑到现实应用中的数据存在异常值和噪声,该算法还使用![]()
![]()
范数拟合特征残差,过滤冗余的噪声信息,保证了算法的鲁棒性。多个基准数据集上的实验结果显示了该算法的最优性能,进一步证明了该算法的有效性。
来源出处
基于局部相似性学习的鲁棒非负矩阵分解
http://sjcj.nuaa.edu.cn/sjcjycl/article/abstract/202305011
相关内容
发布日期
12/12/2023 - 01:18
发布日期
01/21/2024 - 12:12
发布日期
06/17/2022 - 10:21
发布日期
06/17/2022 - 10:21
发布日期
01/10/2022 - 19:31
发布日期
01/22/2024 - 01:44
发布日期
06/17/2022 - 10:21
发布日期
08/23/2024 - 19:21
发布日期
06/17/2022 - 10:21
发布日期
08/18/2024 - 19:19
发布日期
08/04/2020 - 01:35
发布日期
06/17/2022 - 10:21
发布日期
08/04/2020 - 01:35
发布日期
06/17/2022 - 10:21
发布日期
09/10/2023 - 22:37
发布日期
10/31/2021 - 01:12
发布日期
10/31/2021 - 01:48
发布日期
06/17/2022 - 10:21
发布日期
10/12/2023 - 23:10
发布日期
08/04/2020 - 01:35