基于局部相似性学习的鲁棒非负矩阵分解

root 提交于 周二, 10/17/2023 - 23:16
现有的非负矩阵分解方法往往聚焦于数据全局结构信息的学习,在很多情况下忽略了对数据局部信息的学习,而局部学习的方法也通常局限于流行学习,存在一些缺陷。为解决这一问题,提出了一种基于数据局部相似性学习的鲁棒非负矩阵分解算法(Robust nonnegative matrix factorization with local similarity learning, RLS-NMF)。采用一种新的数据局部相似性学习方法,它与流形方法存在显著区别,能够同时学习数据的全局结构信息,从而能挖掘数据类内相似和类间相离的性质。同时,考虑到现实应用中的数据存在异常值和噪声,该算法还使用l2,1范数拟合特征残差,过滤冗余的噪声信息,保证了算法的鲁棒性。多个基准数据集上的实验结果显示了该算法的最优性能,进一步证明了该算法的有效性。

相关内容

发布日期 08/04/2020 - 01:35
发布日期 06/17/2022 - 10:21
发布日期 06/22/2024 - 17:53
发布日期 02/10/2022 - 15:24
发布日期 08/04/2020 - 01:35
发布日期 10/23/2024 - 19:39
发布日期 08/04/2020 - 01:35
发布日期 04/18/2024 - 09:29
发布日期 09/18/2024 - 19:30