针对未知环境中无人机可视图有限的路径规划问题,提出了一种基于凸优化的粒子群算法(Particle swarm optimization,PSO)进行路径点选取。在迭代寻优过程中以凸优化求解出的轨迹、避障以及到达终点距离等为元素设计粒子群的适应度函数,在获得最优路径点后再将路径点之间的轨迹显示出来。将所得轨迹作为同时定位与地图创建(Simultaneous localization and mapping,SLAM)的一部分来建立更加可信的环境地图。理论分析和实验仿真结果表明,与其他智能算法以及基于采样的路径规划算法相比,基于凸优化的粒子群算法可以有效地提高路径规划的效率以及减少规划路径的长度。
来源出处
基于凸优化粒子群算法的在线航迹规划
http://sjcj.nuaa.edu.cn/sjcjycl/article/abstract/202305016
相关内容
发布日期
12/12/2023 - 01:18
发布日期
01/21/2024 - 12:12
发布日期
06/17/2022 - 10:21
发布日期
06/17/2022 - 10:21
发布日期
01/10/2022 - 19:31
发布日期
01/22/2024 - 01:44
发布日期
06/17/2022 - 10:21
发布日期
08/23/2024 - 19:21
发布日期
06/17/2022 - 10:21
发布日期
08/18/2024 - 19:19
发布日期
08/04/2020 - 01:35
发布日期
06/17/2022 - 10:21
发布日期
08/04/2020 - 01:35
发布日期
06/17/2022 - 10:21
发布日期
09/10/2023 - 22:37
发布日期
10/31/2021 - 01:12
发布日期
10/31/2021 - 01:48
发布日期
06/17/2022 - 10:21
发布日期
10/12/2023 - 23:10
发布日期
08/04/2020 - 01:35