基于子图相似性的多动症患者脑网络分析

root 提交于 周二, 10/17/2023 - 23:16
多动症会严重影响儿童发育,对多动症患者的有效诊断受到广泛关注。该文结合脑网络的拓扑结构信息和图上的信号,提出一种基于稀疏表示的图相似性计算方法,从微观到宏观分析脑区之间的差异。该方法使用Pearson相关系数构建全连通脑网络,基于稀疏表示从底层结构中提取节点子网络,根据图核函数计算子网络相似性,最后给出了脑网络相似性的全局指标。以受试者间的相似性作为特征在公共数据集ADHD-200上的分类实验结果表明,该方法能够以93.1%的准确度区分多动症患者和健康对照者,分类性能明显优于其他已有算法。此外,结果表明多动症患者在中央前回、丘脑、海马和脑岛等脑区之间有更强的连接。

相关内容

发布日期 01/10/2022 - 19:31
发布日期 08/23/2024 - 19:21
发布日期 06/17/2022 - 10:21
发布日期 06/17/2022 - 10:21
发布日期 08/04/2020 - 01:35
发布日期 06/17/2022 - 10:21
发布日期 10/12/2023 - 23:10