基于深度学习的自动睡眠分期研究综述

root 提交于 周一, 08/07/2023 - 22:01
睡眠分期是为了分析多导睡眠图记录而进行的重要过程,在睡眠监测和睡眠障碍诊疗中发挥着关键作用。传统的手动睡眠分期需要专业知识,繁琐且耗时;而深度学习通过模拟人脑解释信息的机制来构建模型,具有强大的自动特征提取及特征表达功能。将深度学习方法应用于睡眠分期研究,不依赖于手工特征设计,能够实现睡眠分期的自动化。本文着眼于2017年以来的一些典型的自动睡眠分期研究,重点从单视图和多视图输入两个方面系统回顾了应用于自动睡眠分期中的深度学习模型,并分析了多视图模型存在的难点,指出了其具有的潜在研究价值。最后,对自动睡眠分期未来的研究方向进行了探讨。

相关内容

发布日期 06/17/2022 - 10:21
发布日期 01/01/1970 - 08:00
发布日期 01/21/2024 - 12:12
发布日期 06/17/2022 - 10:21
发布日期 09/10/2023 - 22:37
发布日期 08/04/2020 - 19:02
发布日期 08/04/2020 - 01:35
发布日期 08/04/2020 - 01:35
发布日期 01/10/2022 - 19:32