基于低秩表示判别域适应的多中心自闭症诊断

root 提交于 周一, 08/07/2023 - 22:01
自闭症的诊断主要依靠患者的病史与临床症状表现,尚缺乏客观的评价指标,因此挖掘与疾病相关的生物标记,对于实现自闭症的早期识别与干预至关重要。尽管多中心脑影像数据增加了样本数量并提高了数据的统计能力,有助于提高自闭症的诊断性能,但目前的研究常受到数据异质性的困扰。为此本文提出基于低秩表示判别域适应的诊断模型,实现对多中心自闭症的预测分析。首先将源域数据和目标域数据映射到公共空间,并在空间用目标域数据对源域数据进行重新表示,从而降低源域和目标域之间的分布差异;其次通过学习正交重构矩阵使得源域数据在公共空间中的表示能够保留主要能量,从而适合于随后的学习任务;最后使用源域数据的标签信息将分类损失整合到训练过程中,从而保证公共空间表示的判别能力。为了求解所提出的模型,提出了基于交替方向乘子算法的优化策略。实验结果表明,该模型能够降低多中心数据分布差异,实现知识的有效迁移,从而提高多中心自闭症的诊断性能。

相关内容

发布日期 01/10/2022 - 19:31
发布日期 08/23/2024 - 19:21
发布日期 06/17/2022 - 10:21
发布日期 06/17/2022 - 10:21
发布日期 08/04/2020 - 01:35
发布日期 06/17/2022 - 10:21
发布日期 10/12/2023 - 23:10