基于同步性静息态脑网络的原发性失眠诊断

root 提交于 周一, 08/07/2023 - 22:01
全球有约1/3的人口曾受到失眠的困扰,研究表明脑电的高度觉醒是失眠的一个重要原因,表现在高频脑电活动的增强。然而,由于存在较大的干扰因素,日常静息态条件下评判困难。因此本文提取原发性失眠患者和健康对照的脑电图(Electroencephalogram,EEG)高频频带(Beta、Gamma频带),使用更适合EEG这种非线性、非平稳信号的相位锁相值(Phase locking value, PLV)方法来构建静息态功能脑网络,使用自适应阈值技术进行二值化处理。为了提升失眠症脑网络特征评价的可靠性,综合了各脑网络特征,提出了用于失眠症检测的脑网络综合度量指标。且发现在Gamma频带上,综合指标在原发性失眠患者组与健康对照组之间存在显著性差异(p=0.044)。应用支持向量机(Support vector machine, SVM)进行自动分类,在Beta频带上的正确率达77.7%,灵敏度达90.7%,相较于原始网络特征正确率提高了9.4%,灵敏度提高了20.7%;同时与现有研究对比,本文提出的脑网络综合度量指标的正确率提升了19.4%,灵敏度提升了20.7%。此外,发现Beta频带的综合度量指标分类效果更好,对于失眠症患者的日常诊断具有潜在的应用价值。

相关内容

发布日期 06/17/2022 - 10:21
发布日期 01/01/1970 - 08:00
发布日期 01/21/2024 - 12:12
发布日期 06/17/2022 - 10:21
发布日期 09/10/2023 - 22:37
发布日期 08/04/2020 - 19:02
发布日期 08/04/2020 - 01:35
发布日期 08/04/2020 - 01:35
发布日期 01/10/2022 - 19:32