- 2 次围观
提出一种改进的AdaBoost强化学习算法,并将其应用于鉴别健康者和肝癌患者的呼气信号。首先采集志愿者(包括健康对照组和肝癌患者)的呼气信号,利用Relief算法提取其主要特征;接着融合Stacking 模型,基于传统的机器学习算法训练得到若干基分类器组,构建一个个子分类器。为减少训练样本对分类器性能的影响,利用K折交叉,先后得到k个基分类器,形成一个基分类器组;进一步,由投票法得到该基分类器组,即子分类器对测试集的预测结果;然后根据各子分类器对训练集的预测错误率调整训练样本,并获得各子分类器的权重系数;最后将多个子分类器的预测结果进行加权组合,得到最终预测结果。实验结果表明,相比传统的AdaBoost算法,改进的AdaBoost算法在鉴别肝癌呼气和健康对照组呼气时,错误率明显下降,鲁棒性有所提升。该算法在鉴别肝癌呼气时,准确率可以达到90%左右,特异性和精确度也均超过95%。因此,改进的AdaBoost算法可有效提升肝癌呼气鉴别精度,对通过呼气鉴别肝癌、实现早期诊断的研究具有重要意义。
来源出处
一种可用于鉴别肝癌呼气信号的改进AdaBoost算法
http://sjcj.nuaa.edu.cn/sjcjycl/article/abstract/202304010
相关内容
发布日期
01/21/2024 - 12:12
发布日期
10/31/2021 - 01:47
发布日期
10/31/2021 - 01:16
发布日期
10/31/2021 - 01:48
发布日期
05/12/2024 - 09:43
发布日期
10/16/2024 - 19:36
发布日期
11/02/2023 - 23:34
发布日期
01/10/2022 - 19:31
发布日期
02/24/2024 - 15:39
发布日期
07/04/2024 - 17:54
发布日期
11/28/2023 - 00:31
发布日期
01/10/2022 - 19:31
发布日期
12/15/2023 - 01:19
发布日期
01/01/1970 - 08:00
发布日期
08/04/2020 - 01:35
发布日期
10/31/2021 - 01:12
发布日期
06/17/2022 - 10:21
发布日期
06/17/2022 - 10:21
发布日期
10/20/2024 - 19:37
发布日期
06/11/2024 - 17:46