基于深度域适应CNN决策树的跨语料库情感识别

root 提交于 周五, 06/17/2022 - 10:21
在跨语料库语音情感识别中,由于目标域和源域样本不匹配,导致情感识别性能很差。为了提高跨语料库语音情感识别性能,本文提出一种基于深度域适应和卷积神经网络(Convolutional neural network, CNN)决策树模型的跨语料库语音情感识别方法。首先构建基于联合约束深度域适应的局部特征迁移学习网络,通过最小化目标域和源域在特征空间和希尔伯特空间的联合差异,挖掘两个语料库之间的相关性,学习从目标域到源域的可迁移不变特征。然后,为了降低跨语料库背景下多种情感间的易混淆情感的分类误差,依据情感混淆度构建CNN决策树多级分类模型,对多种情感先粗分类再细分类。使用CASIA,EMO-DB和RAVDESS三个语料库进行验证。实验结果表明,本文的跨语料库语音情感识别方法比CNN基线方法平均识别率高19.32%~31.08%,系统性能得到很大提升。

相关内容

发布日期 01/10/2022 - 19:31
发布日期 08/23/2024 - 19:21
发布日期 06/17/2022 - 10:21
发布日期 06/17/2022 - 10:21
发布日期 08/04/2020 - 01:35
发布日期 06/17/2022 - 10:21
发布日期 10/12/2023 - 23:10