身份保持约束下的面部图像超分辨率重建方法

root 提交于 周五, 06/17/2022 - 10:21
低分辨率是影响人脸识别精度的重要因素。一种有效方法是使用图像超分辨率技术对低分辨率图像重建,生成超分辨率图像后再对其作人脸识别,从而克服低分辨率面部图像对人脸识别的限制。但是,现有超分辨率方法在重建过程中往往忽略了保持其原始身份信息,这直接影响生成图像的人脸识别结果。针对上述问题,提出了一种身份保持约束下的面部超分辨率重建方法IPNet,在提高低分辨率面部图像质量的同时,能保持重建后的面部图像身份。IPNet方法将语义分割网络和面部生成器相结合,通过语义分割网络提取低维隐码和多分辨率空间特征,进而指导面部生成器输出接近于原图的真实面部图像。在此基础上引入人脸识别网络,将身份信息整合到超分辨率方法中,从而约束重建前后的面部图像身份保持一致。实验结果表明,IPNet方法在超分辨率图像质量和身份保持上均优于其他对比方法。

相关内容

发布日期 10/31/2021 - 01:12
发布日期 08/04/2020 - 01:35
发布日期 01/10/2022 - 19:31
发布日期 12/21/2023 - 11:39
发布日期 10/09/2024 - 19:31
发布日期 08/04/2020 - 01:35
发布日期 01/11/2025 - 20:33