融合深浅特征和动态选择机制的行人检测研究

root 提交于 周五, 06/17/2022 - 10:21
针对无人驾驶场景下行人多尺度、小尺度造成漏检率升高,检测精度下降的问题,本文提出一种融合深浅层特征和级联动态选择机制的行人检测方法。首先,在YOLO v3-tiny的基础上基于密集连接的卷积神经网络改进特征提取部分,融合行人的深层特征和浅层特征加强网络对行人的识别能力;其次,在改进的主干网络上级联具有动态选择机制的注意力模块,使检测网络更加适应动态的行人尺度变化;最后,本文选择BDD 100K数据集和Caltech加州理工学院行人数据集进行实验,在保证实时性的前提下(25 ms/张),本文模型在BDD 100K数据集行人漏检率降低11.4%,平均检测精度提高11.7%,在Caltech行人漏检率降低10.1%,平均检测精度提高6.7%,适用于无人驾驶行人检测领域。

相关内容

发布日期 01/10/2022 - 19:31
发布日期 10/31/2021 - 01:16
发布日期 11/09/2024 - 19:46
发布日期 11/17/2024 - 19:48
发布日期 07/23/2023 - 21:46
发布日期 03/11/2025 - 20:51
发布日期 06/17/2022 - 10:21
发布日期 10/14/2023 - 23:10
发布日期 06/05/2024 - 17:45