跨模态视觉问答与推理研究进展

root 提交于 周五, 06/17/2022 - 10:21
随着社交媒体和人机交互技术的快速发展,视频、图像以及文本等多模态数据在互联网中呈爆炸式增长,因此多模态智能研究受到关注。其中,视觉问答与推理任务是跨模态智能研究的一个重要组成部分,也是人类实现人工智能的重要基础,已成功应用于人机交互、智能医疗以及无人驾驶等领域。本文对视觉问答与推理的相关算法进行了全面概括和归类分析。首先,介绍了视觉问答与推理的定义,并简述了当前该任务面临的挑战;其次,从基于注意力机制、基于图网络、基于预训练、基于外部知识库和基于可解释推理机制5个方面对现有方法进行总结和归纳;然后,全面介绍了视觉问答与推理常用公开数据集,并对相关数据集上的已有算法进行详细分析;最后,对视觉问答与推理任务的未来方向进行了展望。

相关内容

发布日期 01/21/2024 - 12:12
发布日期 05/12/2024 - 09:43
发布日期 02/24/2024 - 15:39
发布日期 07/04/2024 - 17:54
发布日期 08/04/2020 - 01:35
发布日期 10/31/2021 - 01:12
发布日期 06/17/2022 - 10:21
发布日期 06/11/2024 - 17:46