- 2 次围观
为改善智能反射表面(Intelligent reflective surface,IRS)辅助的毫米波多输入多输出(Multiple-input multiple-output,MIMO)级联信道的估计精度和收敛速度,基于平行因子(Parallel factor,PARAFAC)分解模型,把常规的双线性交替最小二乘(Bilinear alternating least squares,BALS)算法改进为带松弛因子的ω-BALS算法和正则化的T-BALS,加快了收敛速度和算法稳定性。当基站、IRS元件或用户侧的阵列天线数目较大时,提出改进的奇异值(Singular value decomposition,svd)-BALS算法。该算法通过奇异值分解压缩张量,再利用低维度的核心张量来重构模式n矩阵。仿真结果表明,该算法的归一化均方误差性能有所提高,并且加快了收敛速度。
来源出处
改进的IRS辅助毫米波MIMO级联信道估计
http://sjcj.nuaa.edu.cn/ch/reader/view_abstract.aspx?file_no=202206007&flag=1
相关内容
发布日期
01/22/2024 - 00:46
发布日期
11/17/2024 - 19:48
发布日期
08/04/2020 - 01:35
发布日期
09/02/2024 - 19:26
发布日期
08/04/2020 - 01:35
发布日期
11/13/2024 - 19:47
发布日期
06/17/2022 - 10:21
发布日期
10/31/2021 - 01:47
发布日期
01/10/2022 - 19:31
发布日期
10/13/2024 - 19:35
发布日期
05/06/2024 - 09:39
发布日期
08/04/2020 - 01:35
发布日期
10/09/2024 - 19:31
发布日期
11/22/2023 - 00:25
发布日期
06/23/2024 - 17:52
发布日期
07/27/2023 - 21:49
发布日期
10/31/2021 - 01:48
发布日期
02/17/2024 - 13:54
发布日期
10/31/2021 - 01:12
发布日期
06/17/2022 - 10:21