针对通信辐射源个体识别研究中单一特征不足以全面表示细微特征差异,从而限制识别率的问题,提出了一种基于特征融合的通信辐射源个体识别方法。该方法首先对原信号进行短时傅里叶变换和双谱变换,提取时频特征和双谱特征,结合小波融合技术进行特征融合,最后使用残差神经网络挖掘信号隐含的深层次特征,完成分类识别。实验结果表明,对于模拟信号源发射的短波通信信号,经过特征融合后的识别效果相较于使用单一特征方法有更高的识别准确率,并且在低信噪比的情况下仍有较好的识别效果。
来源出处
相关内容
发布日期
12/12/2023 - 01:18
发布日期
01/21/2024 - 12:12
发布日期
06/17/2022 - 10:21
发布日期
06/17/2022 - 10:21
发布日期
01/10/2022 - 19:31
发布日期
01/22/2024 - 01:44
发布日期
06/17/2022 - 10:21
发布日期
08/23/2024 - 19:21
发布日期
06/17/2022 - 10:21
发布日期
08/18/2024 - 19:19
发布日期
08/04/2020 - 01:35
发布日期
06/17/2022 - 10:21
发布日期
08/04/2020 - 01:35
发布日期
06/17/2022 - 10:21
发布日期
09/10/2023 - 22:37
发布日期
10/31/2021 - 01:12
发布日期
10/31/2021 - 01:48
发布日期
06/17/2022 - 10:21
发布日期
10/12/2023 - 23:10
发布日期
08/04/2020 - 01:35