5G蜂窝网络发展迅猛,其覆盖面积将逐渐增大,因此使用5G蜂窝网络进行定位是有研究潜力的研究方向。本文提出一种新的深度学习技术来实现高效、高精度和低占用的定位,以代替传统指纹定位过程中繁重的指纹库生成以及距离计算。该方法建立了一个特殊的卷积神经网络,并根据5G天线信号的接收信号强度指示、相位和到达角等特征量,选择合适的输入数据格式构造样本组建训练集,对该卷积神经网络进行训练。训练得到的卷积神经网络可以替代指纹定位中的庞大指纹库,非常有利于直接在5G移动设备端实现定位。虽然卷积神经网络在训练过程中需要大量时间,但在训练完毕后直接进行分类定位的速度非常快,可以保障定位实现的实时性。本文所实现的卷积神经网络权重与偏置所占内存不到0.5 MB,且能够在实际应用环境中以95%的定位准确率以及0.1 m的平均定位精度实现高精度定位。
来源出处
基于卷积神经网络的5G蜂窝网络无线定位方法
http://sjcj.nuaa.edu.cn/ch/reader/view_abstract.aspx?file_no=202206005&flag=1
相关内容
发布日期
12/12/2023 - 01:18
发布日期
01/21/2024 - 12:12
发布日期
06/17/2022 - 10:21
发布日期
06/17/2022 - 10:21
发布日期
01/10/2022 - 19:31
发布日期
01/22/2024 - 01:44
发布日期
06/17/2022 - 10:21
发布日期
08/23/2024 - 19:21
发布日期
06/17/2022 - 10:21
发布日期
08/18/2024 - 19:19
发布日期
08/04/2020 - 01:35
发布日期
06/17/2022 - 10:21
发布日期
08/04/2020 - 01:35
发布日期
06/17/2022 - 10:21
发布日期
09/10/2023 - 22:37
发布日期
10/31/2021 - 01:12
发布日期
10/31/2021 - 01:48
发布日期
06/17/2022 - 10:21
发布日期
10/12/2023 - 23:10
发布日期
08/04/2020 - 01:35