基于句法和全文信息增强的中文事件检测方法

root 提交于 周五, 06/17/2022 - 10:21
针对目前中文事件检测中词语之间句法依存关系利用不充分和缺乏文章全局语义信息的问题,提出了一种基于句法和全文信息增强的中文事件检测模型。模型首先引入图卷积网络 (Graph convolutional network, GCN),通过捕获词语之间的依存句法关系来增强词语的特征表示。之后采用双向门控循环单元(Bidirectional gate recurrent unit, Bi-GRU)分别学习句子内和句子之间的上下文信息,得到包含文章全局信息的句向量。最后将字、词、句3个粒度的信息通过门结构进行动态融合,使用条件随机场(Conditional random field, CRF)完成对句子中触发词的识别和标注。在ACE2005和CEC中文数据集上的实验结果表明,本文方法有效提升了中文事件检测的效果。

相关内容

发布日期 01/10/2022 - 19:31
发布日期 08/23/2024 - 19:21
发布日期 06/17/2022 - 10:21
发布日期 06/17/2022 - 10:21
发布日期 08/04/2020 - 01:35
发布日期 06/17/2022 - 10:21
发布日期 10/12/2023 - 23:10