数据流聚类算法研究

root 提交于 周五, 06/17/2022 - 10:21
许多应用程序会产生大量的流数据,如网络流、web点击流、视频流、事件流和语义概念流。数据流挖掘已成为热点问题,其目标是从连续不断的流数据中提取隐藏的知识/模式。聚类作为数据流挖掘领域的一个重要问题,在近期被广泛研究。不同于传统的静态数据聚类问题,数据流聚类面临有限内存、一遍扫描、实时响应和概念漂移等许多约束。本文对数据流挖掘中的各种聚类算法进行了总结。首先介绍了数据流挖掘的约束;随后给出了数据流聚类的一般模型,并描述了其与传统数据聚类之间的关联;最后提出数据流聚类领域中进一步的研究热点和研究方向。

相关内容

发布日期 06/17/2022 - 10:21
发布日期 01/01/1970 - 08:00
发布日期 01/21/2024 - 12:12
发布日期 06/17/2022 - 10:21
发布日期 09/10/2023 - 22:37
发布日期 08/04/2020 - 19:02
发布日期 08/04/2020 - 01:35
发布日期 08/04/2020 - 01:35
发布日期 01/10/2022 - 19:32