- 3 次围观
颅内动脉瘤是一种具有较高致死和致残率的常见脑血管疾病。近年来,临床对基于影像的智能化和精准化的疾病诊断策略提出了迫切需求,其中血管及病灶的精准分割是其重要基础。本文提出了一种新型的颅内动脉瘤血管多结构分割框架,利用血管先验灰度特征建立了自适应的数据采样方法,并设计了一种基于Dense机制的深度网络模型实现血管分割。本文收集了135例颅内动脉瘤患者(年龄分布:54.7±12.7岁, 75名男性)的飞行时间磁共振血管影像进行模型的训练和测试。相比于原空间采样和图像压缩方法(平均Dice相似性系数:0.829和0.780),自适应采样方法可以明显提升血管分割的精度(平均Dice相似性系数:0.858);与经典的3D UNet、SegNet和DeepLabV3+网络相比(平均Dice相似性系数:0.854,0.824和0.800),基于Dense机制的网络能够利用更少的计算资源实现更优的分割效果,对于不同位置和大小的动脉瘤也表现出良好的分割鲁棒性。
来源出处
基于自适应采样与Dense机制的颅内动脉瘤血管多结构分割
http://sjcj.nuaa.edu.cn/ch/reader/view_abstract.aspx?file_no=202204006&flag=1
相关内容
发布日期
12/12/2023 - 01:18
发布日期
01/21/2024 - 12:12
发布日期
06/17/2022 - 10:21
发布日期
06/17/2022 - 10:21
发布日期
01/10/2022 - 19:31
发布日期
01/22/2024 - 01:44
发布日期
06/17/2022 - 10:21
发布日期
08/23/2024 - 19:21
发布日期
06/17/2022 - 10:21
发布日期
08/18/2024 - 19:19
发布日期
08/04/2020 - 01:35
发布日期
06/17/2022 - 10:21
发布日期
08/04/2020 - 01:35
发布日期
06/17/2022 - 10:21
发布日期
09/10/2023 - 22:37
发布日期
10/31/2021 - 01:12
发布日期
10/31/2021 - 01:48
发布日期
06/17/2022 - 10:21
发布日期
10/12/2023 - 23:10
发布日期
08/04/2020 - 01:35