有效地分析处理癫痫脑电信号并对其准确分类可以进一步完善癫痫检测问题。因此,各种深度学习方法逐渐应用到该问题中,如使用BiLSTM模型对癫痫脑电的一维时间序列数据进行处理。为进一步提高癫痫脑电分类的准确率,本文将癫痫脑电的一维时间序列数据转换为二维图像,使用EfficientNetV2模型来实现癫痫检测的二分类。同时,引入梯度加权类激活映射(Gradient-weighted class activation mapping, Grad-CAM)对二维图像分类进行可视化分析。对德国伯恩大学脑电癫痫脑电信号数据集的预处理版本进行分类实验,EfficientNetV2模型的准确率达到了98.69%,优于BiLSTM模型。结果表明,EfficientNetV2模型可以有效通过二维脑电图像实现癫痫脑电分类,而且分类准确率更高。
来源出处
相关内容
发布日期
06/17/2022 - 10:21
发布日期
06/17/2022 - 10:21
发布日期
06/08/2024 - 17:47
发布日期
06/17/2022 - 10:21
发布日期
07/12/2024 - 17:58
发布日期
01/01/1970 - 08:00
发布日期
06/17/2022 - 10:21
发布日期
09/21/2023 - 22:52
发布日期
01/21/2024 - 12:12
发布日期
06/17/2022 - 10:21
发布日期
09/10/2023 - 22:37
发布日期
08/04/2020 - 19:02
发布日期
01/10/2022 - 19:32
发布日期
03/19/2024 - 09:13
发布日期
07/23/2023 - 21:46
发布日期
08/04/2020 - 01:35
发布日期
08/04/2020 - 01:35
发布日期
01/10/2022 - 19:32
发布日期
03/19/2024 - 09:13
发布日期
08/04/2020 - 01:35