- 1次围观
随着社交网络和互联网的飞速发展,产生了大量的微博短文本流数据。及时发现微博文本流中热点话题,对话题推荐和舆情监测等有重要作用。为了解决微博短文本特征稀疏问题,利用微博评论对微博进行特征扩展,提出了一种基于特征扩展的微博短文本流热点话题检测方法(Feature extension-based hot topic detection, FE-HTD)。首先利用评论用户的影响力以及评论文本的点赞数筛选评论文本,并使用词共现和词频-逆文档频率(Term frequency-inverse document frequency,TF-IDF)方法从选取的评论文本中抽取特征词完成对微博文本的特征扩展;然后计算微博文本流的词对速度、词对加速度,并根据点赞数、评论数计算微博文本强度,结合词对加速度与微博文本强度定义突发特征;最后,根据突发词对的速度确定可变长的热点话题窗口范围,通过聚类得到窗口中热点话题的主题结构。实验中,将所提算法与基于文本的话题检测(Text-based topic detection, T-TD)和基于突发词的话题检测(Burst words-based topic detection, BW-TD)进行对比实验。结果表明,本文算法FE-HTD准确率达76.4%,召回率达78.7%,与对比算法T-TD和BW-TD相比提高了10%。
来源出处
基于特征扩展的微博短文本流热点话题检测方法
http://sjcj.nuaa.edu.cn/ch/reader/view_abstract.aspx?file_no=202203012&flag=1
相关内容
发布日期
06/17/2022 - 10:21
发布日期
06/17/2022 - 10:21
发布日期
06/08/2024 - 17:47
发布日期
06/17/2022 - 10:21
发布日期
07/12/2024 - 17:58
发布日期
01/01/1970 - 08:00
发布日期
06/17/2022 - 10:21
发布日期
09/21/2023 - 22:52
发布日期
01/21/2024 - 12:12
发布日期
06/17/2022 - 10:21
发布日期
09/10/2023 - 22:37
发布日期
08/04/2020 - 19:02
发布日期
01/10/2022 - 19:32
发布日期
03/19/2024 - 09:13
发布日期
07/23/2023 - 21:46
发布日期
08/04/2020 - 01:35
发布日期
08/04/2020 - 01:35
发布日期
01/10/2022 - 19:32
发布日期
03/19/2024 - 09:13
发布日期
08/04/2020 - 01:35