- 3 次围观
针对风洞流量测量中传统静态软测量模型估计精度低、鲁棒性差等问题,提出了注意力机制(Attention mechanism, Attention)、长短时记忆神经网络(Long short-term memory, LSTM)和卡尔曼滤波(Kalman filtering, Kalman)结合的Attention-LSTM-Kalman软测量模型:通过LSTM网络建立静态软测量模型,在此基础上,提出一种基于注意力机制的改进方案,考虑到系统的动态特性,使用卡尔曼滤波动态调整软测量模型输出序列。实验结果表明,静态预测模型LSTM的预测效果优于循环神经网络(Recurrent neural network, RNN)和门控循环单元(Gated recurrent unit, GRU)等模型;基于LSTM、Attention-LSTM和Attention-LSTM-Kalman的3种模型的对比预测测量结果表明,注意力机制能有效提高模型精准度,引入卡尔曼滤波改善了模型的动态测量特性。该模型方案在风洞系统的流量测量验证了其可行性和有效性。
来源出处
基于Attention-LSTM-Kalman建模的风洞动态流量软测量
http://sjcj.nuaa.edu.cn/ch/reader/view_abstract.aspx?file_no=202202019&flag=1
相关内容
发布日期
01/21/2024 - 12:12
发布日期
10/31/2021 - 01:47
发布日期
10/31/2021 - 01:16
发布日期
10/31/2021 - 01:48
发布日期
05/12/2024 - 09:43
发布日期
10/16/2024 - 19:36
发布日期
11/02/2023 - 23:34
发布日期
01/10/2022 - 19:31
发布日期
02/24/2024 - 15:39
发布日期
07/04/2024 - 17:54
发布日期
11/28/2023 - 00:31
发布日期
01/10/2022 - 19:31
发布日期
12/15/2023 - 01:19
发布日期
01/01/1970 - 08:00
发布日期
08/04/2020 - 01:35
发布日期
10/31/2021 - 01:12
发布日期
06/17/2022 - 10:21
发布日期
06/17/2022 - 10:21
发布日期
10/20/2024 - 19:37
发布日期
06/11/2024 - 17:46