基于双迭代聚能量字典学习的数据压缩算法

root 提交于 周日, 10/31/2021 - 01:53
针对基于稀疏表示(Sparse representation,SR)的数据压缩压缩率低、重构精度低等问题,本文提出一种基于双迭代的聚能量字典学习算法,把高维信号映射到低维特征空间,当低维特征空间保留高维原始信号越多的特征时,高维信号从低维特征空间中恢复出来的精度越高。为了使低维字典保留高维字典更多的主成分,本文提出了一个新的变换,被命名为?变换,能提升高维字典的能量集中性。除此之外,针对高维字典与低维字典的耦合关系,建立了双循环迭代训练,增加字典的能量集中性与字典的表达能力。实验表明,相比于传统算法,本文提出算法字典学习收敛速度提升了3倍以上。此外,该方法可以得到较高的压缩比和更高质量的重构信号。

相关内容

发布日期 01/10/2022 - 19:31
发布日期 08/23/2024 - 19:21
发布日期 06/17/2022 - 10:21
发布日期 06/17/2022 - 10:21
发布日期 08/04/2020 - 01:35
发布日期 06/17/2022 - 10:21
发布日期 10/12/2023 - 23:10