- 20 次围观
输电线路的绝缘子定期巡检是必不可少的一项任务,而传统的人工巡检存在着效率低、工作强度大等问题。因此,本文设计了一种改进的U-Net模型实现对绝缘子的分割,并使用改进的YOLOv5实现在复杂背景下对爆破绝缘子的定位。本文基于U-Net图像语义分割模型,提出一种改进的网络结构SERes-Unet。模型引入残差结构减少卷积过程中存在的梯度消失、结构信息损耗的影响,引入注意力机制对特征权重进行校正,从而提升网络性能。为实现对高分辨率图像的爆破绝缘子检测,提出将图片进行切割再进行检测,再通过非极大值抑制(Non-maximum suppression,NMS)进行筛选,获取图像全部爆破绝缘子的位置。本文设计的多组实验验证了模型的有效性和高效性。本文方法绝缘子分割精度达到0.96,爆破绝缘子检测精确率达到0.97,召回率达到0.99。
来源出处
基于改进的U-Net和YOLOv5的绝缘子掩模获取与缺陷检测
http://sjcj.nuaa.edu.cn/ch/reader/view_abstract.aspx?file_no=202105019&flag=1
相关内容
发布日期
12/12/2023 - 01:18
发布日期
01/21/2024 - 12:12
发布日期
06/17/2022 - 10:21
发布日期
06/17/2022 - 10:21
发布日期
01/10/2022 - 19:31
发布日期
01/22/2024 - 01:44
发布日期
06/17/2022 - 10:21
发布日期
08/23/2024 - 19:21
发布日期
06/17/2022 - 10:21
发布日期
08/18/2024 - 19:19
发布日期
08/04/2020 - 01:35
发布日期
06/17/2022 - 10:21
发布日期
08/04/2020 - 01:35
发布日期
06/17/2022 - 10:21
发布日期
09/10/2023 - 22:37
发布日期
10/31/2021 - 01:12
发布日期
10/31/2021 - 01:48
发布日期
06/17/2022 - 10:21
发布日期
10/12/2023 - 23:10
发布日期
08/04/2020 - 01:35