结合SVM和香农能量的HSMM心音分割算法

root 提交于 周日, 10/31/2021 - 01:53
针对基于逻辑回归的隐半马尔可夫模型中希尔伯特(Hilbert)变换提取的心音包络具有较大毛刺,提出一种结合支持向量机(Support vector machine, SVM)和香农能量的隐半马尔可夫模型(Hidden semi-Markov model, HSMM)心音分割算法。首先采用小波降噪的方法对心音进行降噪,接着根据R峰和T波标记心音,提取香农能量包络等特征,然后对结合逻辑回归模型(Logistic regression, LR)的HSMM相关参数进行训练,并借助Viterbi算法推测出最可能的状态。最后,通过SVM模型识别第一心音S1和第二心音S2。该算法无需设置硬阈值,有效地抑制了噪声,更有助于包络的提取。实验结果表明,提出的算法分割精确度较参考算法得到显著的提升,具有良好的抗噪性能,取得了更好的分割效果。

相关内容

发布日期 01/21/2024 - 12:12
发布日期 05/12/2024 - 09:43
发布日期 02/24/2024 - 15:39
发布日期 07/04/2024 - 17:54
发布日期 08/04/2020 - 01:35
发布日期 10/31/2021 - 01:12
发布日期 06/17/2022 - 10:21
发布日期 06/11/2024 - 17:46