- 3 次围观
针对基于逻辑回归的隐半马尔可夫模型中希尔伯特(Hilbert)变换提取的心音包络具有较大毛刺,提出一种结合支持向量机(Support vector machine, SVM)和香农能量的隐半马尔可夫模型(Hidden semi-Markov model, HSMM)心音分割算法。首先采用小波降噪的方法对心音进行降噪,接着根据R峰和T波标记心音,提取香农能量包络等特征,然后对结合逻辑回归模型(Logistic regression, LR)的HSMM相关参数进行训练,并借助Viterbi算法推测出最可能的状态。最后,通过SVM模型识别第一心音S1和第二心音S2。该算法无需设置硬阈值,有效地抑制了噪声,更有助于包络的提取。实验结果表明,提出的算法分割精确度较参考算法得到显著的提升,具有良好的抗噪性能,取得了更好的分割效果。
来源出处
结合SVM和香农能量的HSMM心音分割算法
http://sjcj.nuaa.edu.cn/ch/reader/view_abstract.aspx?file_no=202105010&flag=1
相关内容
发布日期
06/23/2024 - 17:52
发布日期
03/19/2024 - 09:13
发布日期
01/10/2022 - 19:31
发布日期
10/31/2021 - 01:16
发布日期
11/09/2024 - 19:46
发布日期
06/17/2022 - 10:21
发布日期
11/17/2024 - 19:48
发布日期
10/08/2023 - 23:02
发布日期
07/23/2023 - 21:46
发布日期
06/17/2022 - 10:21
发布日期
08/04/2020 - 01:35
发布日期
03/11/2025 - 20:51
发布日期
01/10/2022 - 19:31
发布日期
01/10/2022 - 19:31
发布日期
06/17/2022 - 10:21
发布日期
06/17/2022 - 10:21
发布日期
10/14/2023 - 23:10
发布日期
10/19/2024 - 19:37
发布日期
06/05/2024 - 17:45
发布日期
10/31/2021 - 01:12