- 4 次围观
自动说话人验证(Automatic speaker verification,ASV)技术的发展正在深刻地影响和改变着当前的人机交互系统,ASV作为一些智能设备的语音核心功能,可以接受目标说话人的语音并准确识别出该说话人的身份。近年来,人工智能技术的快速进展推动了ASV系统实现跨越式发展。然而,随着人工神经网络和深度学习技术的发展,越来越多的研究者开始研究如何攻击ASV系统。如何通过对原始语音进行一系列处理实现对ASV系统的攻击,是近年来语音领域研究的一个热点问题。目前,对ASV系统的攻击方法大致可分为欺骗攻击(Spoofing attack)和对抗攻击(Adversarial attack)两大类。本文对两大类的典型方法和基本原理进行综述,梳理了目前一些攻击手段中存在的若干问题,揭示了ASV系统存在的安全隐患,对今后ASV系统安全性的发展做了简要的展望,并为未来进一步提高ASV系统的安全性和可靠性提供了参考。
来源出处
说话人验证系统攻击方法的研究现状及展望
http://sjcj.nuaa.edu.cn/ch/reader/view_abstract.aspx?file_no=202105001&flag=1
相关内容
发布日期
01/22/2024 - 00:46
发布日期
11/17/2024 - 19:48
发布日期
08/04/2020 - 01:35
发布日期
09/02/2024 - 19:26
发布日期
08/04/2020 - 01:35
发布日期
11/13/2024 - 19:47
发布日期
06/17/2022 - 10:21
发布日期
10/31/2021 - 01:47
发布日期
01/10/2022 - 19:31
发布日期
10/13/2024 - 19:35
发布日期
05/06/2024 - 09:39
发布日期
08/04/2020 - 01:35
发布日期
10/09/2024 - 19:31
发布日期
11/22/2023 - 00:25
发布日期
06/23/2024 - 17:52
发布日期
07/27/2023 - 21:49
发布日期
10/31/2021 - 01:48
发布日期
02/17/2024 - 13:54
发布日期
10/31/2021 - 01:12
发布日期
06/17/2022 - 10:21