- 7 次围观
针对概率数据互联(Probability data association, PDA)算法在杂波环境下计算复杂度高的问题,设计了一种基于PDA算法的数据关联方法,当波门内量测点数量大于阈值时,采用PDA算法更新目标状态;当波门内量测点数量小于等于阈值时,采用最近邻思想筛选目标量测点,接着利用卡尔曼滤波(Kalman filter, KF)算法实现杂波环境下的快速滤波更新。在此基础上,通过自适应区间平滑方法,动态修正平滑区间,实现整体状态估计的反向平滑,从而提升算法的精度。不同杂波环境下的实验结果表明,本文方法相较于PDA算法与KF-PDA算法,在保证跟踪效率的同时,有效提升了系统状态的估计精度,验证了该方法的鲁棒性和有效性。
来源出处
基于自适应平滑KF-PDA算法的舰船单目标跟踪
http://sjcj.nuaa.edu.cn/sjcjycl/article/abstract/202406015
相关内容
发布日期
08/04/2020 - 01:35
发布日期
01/10/2022 - 19:32
发布日期
08/04/2020 - 01:35
发布日期
10/31/2021 - 01:12
发布日期
09/05/2024 - 19:28
发布日期
02/18/2025 - 20:48
发布日期
10/17/2023 - 23:16
发布日期
06/17/2022 - 10:21
发布日期
01/10/2022 - 19:31
发布日期
02/18/2025 - 20:47
发布日期
01/18/2025 - 20:37
发布日期
08/04/2020 - 01:35
发布日期
08/04/2020 - 01:35
发布日期
01/31/2024 - 13:01
发布日期
10/31/2021 - 01:48
发布日期
01/10/2022 - 19:31
发布日期
07/19/2023 - 21:44
发布日期
08/04/2020 - 01:35
发布日期
02/29/2024 - 16:35
发布日期
06/17/2022 - 10:21