大规模MIMO通信中基于Jacobi预迭代的改进Gauss-Seide算法

root 提交于 周日, 10/31/2021 - 01:53
在大规模MIMO系统中,现有的高斯-赛德尔(Gauss-Seide,GS)算法相较于最小均方误差(Minimum mean-square error,MMSE)算法,GS的复杂度较低,但其检测性能相比而言较差。本文提出一种适用于大规模MIMO系统上行链路检测的基于雅克比预迭代改进的高斯-赛德尔(Jacobi-improved Gauss-Seide,JA-IGS)检测算法,该算法首先通过引入雅可比(Jacobi,JA)预迭代器来优化迭代初始解,然后对传统的GS进行线性优化,在增加较低复杂度情况下,检测性能和收敛速度有明显提升。仿真结果表明,与传统GS和JA检测算法相比,该算法具有较低的误码率(Bit error ratio,BER)和较高的计算效率。

相关内容

发布日期 08/04/2020 - 01:35
发布日期 08/04/2020 - 01:35
发布日期 10/16/2024 - 19:36
发布日期 05/22/2024 - 17:37
发布日期 06/17/2022 - 10:21
发布日期 08/04/2020 - 01:35
发布日期 01/11/2025 - 20:33
发布日期 05/08/2024 - 09:41